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1 Introduction

The advent of ubiquitous fast networks, cheap storage and processing cycles allows for the accumulation, organization and
access of large collections of data. In many areas such as communications and traffic networks, biological data management,
cartography and web information systems large databases are represented as labeled graphs for which regular path queries
(RPQs) [1] represent a common and convenient way to access and extract knowledge. Users can further specify the required
knowledge by expressing their queries in terms of weighted RPQs (essentially weighted automata) and requesting the return
of the cheapest such specified paths. Recent work [2, 3] explored computational aspects of evaluating regular path queries
on large, weighted distributed data-graphs and, in particular, single and multiple source distributed evaluation, termination
detection, fault tolerance and computation in grid environments. In this work we further look to enhance the practicality of
extracting information from data-graphs by augmenting the expressive power with the use of information granules [4].

For instance, consider the example of a spatial network, e.g., a road map [3]. A typical RPQ for this application domain
consists in defining the initial location, the destination, and some intermediate locations along the desired paths. Further,
symbols can be associated with edges to define a specific kind of connection (road) between locations (cities). An RPQ
provides us with enough descriptive power to express a request such as “I would like to go from Pisa to Florence via
Lucca, following a road between Pisa and Lucca, and following a road or a highway between Lucca and Florence”. One
can further limit the paths returned by the evaluation of the aforementioned query by designing a weighted RPQ, but this
approach is too rigid, lacks convenience and will not be able to allow requests such as “I would like to go from Pisa to
Florence via Lucca, following a road between Pisa and Lucca in at most 20 minutes, and following a highway in about 30
minutes or a road in at least 40 minutes between Lucca and Florence”.

To allow for such requests we propose to enhance RPQs with elements of granular computing [4], a theory that deals
with operations performed over information granules, rather than singular and exact values. Granular computing models the
abstraction process of the human mind, and allows to associate a semantic meaning to data, i.e., to “compute with words” [5].
In the literature, many theories to represent information granules have been developed. Fuzzy set theory (FST) [5] is the
most established theory of information granulation. The basic computational units of FST are fuzzy sets, i.e. sets with
elements whose degree of membership ranges in the [0, 1] real interval. For instance, the imprecise time distances expressed
by “at most 20 minutes”, “about 30 minutes” and “at least 40 minutes” of the previous example can be easily modeled
by the fuzzy sets depicted in Fig. 1. In our work, we represent information granules in the form of fuzzy sets and, more
specifically, fuzzy quantities, i.e. fuzzy sets defined over a real-valued universe of discourse [6, 7].

2 The Model

2.1 The Basic Model

Let us consider a data-graph DB that can be represented as a weighted and labeled graph DB = (V,E, µ, ω), where
V = {o0, . . . , oN} is the set of vertices representing data-graph objects and E ⊆ V × V is the set of edges. The functions
µ : E → ∆ and ω : E → K assign the edge labels and weights, respectively. The signature ∆ defines an alphabet of
symbols in a specific domain. For instance, in the domain of spatial networks, values in ∆ can be road to Ci, highway to
Ci, freeway to Ci, bridge to Ci, etc. The weight set K contains elements in the domain knowledge associated to the edges.
More formally, a graph edge ej = (oj , o

′
j) represents a relationship between objects oj and o′j , identified by µ(ej) ∈ ∆ and

tied to the domain knowledge associated to the information granule ω(ej) ∈ K. Figure 2(a) shows a sample spatial network



Fig. 1. Fuzzy quantities modeling imprecise time distances.
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Fig. 2. Sample (a) data-graph and (b) RPQ with fuzzy weights.

weighted by fuzzy quantities that model imprecise time distances. The weights defined by ω over K are used to compute a
cost c(π) of each path π starting from vertex o0 and ending at vertex oF . The cost c(π) is computed in a general domain
C, whose nature depends on the specific application. In order to compute c(π), we need means for aggregating the costs of
each edge. We call this operator the cost sum, denoted as ⊕C : C × C → C. Moreover, we need an order relation �C to
establish an ordering between the costs in C, so to be able to determine cheap paths. For instance, in the simplest cases [2,
3], both weights and costs are real numbers, modeling, e.g., the length in miles of a road and the total length of the trip.
Formally, we have K ≡ C ≡ R, the cost-sum ⊕C is the real +R operator, and the �C is the standard ordering relation ≤R
between reals.

An RPQ on such a DB is described by a finite state automaton (FSA) A = (P,∆, τ, p0, PF ), where P is the set of
states, ∆ is the signature, τ is the transition relation, p0 is the initial state, and PF is the set of final states. Each edge in the
automaton identifies a query term and every path leading from the initial state p0 to a final state pf ∈ PF determines an
admissible instance of the query, i.e., an acceptable path.

The original algorithm looks for the cheapest acceptable paths defined by an RPQ A over a DB distributed on a grid
of machines [3]. The query matching procedure consists in finding sub-graphs of the DB that satisfy the RPQ. Roughly
speaking, a matching sub-graph is such if its edge labels match with the transition labels of any of the acceptable paths
defined in the RPQ. The algorithm starts from a root vertex o0 and proceeds by incrementally building the set of optimal
acceptable solutions in a distributed fashion. Each time a new (partially) acceptable path is found, its (partial) cost is
computed by aggregating the costs of the edges via ⊕C. If the newly found path is better than the (possibly) already
existing one, then the former replaces the latter in the set of optimal acceptable solutions. Evaluation of the cheapest path
is performed via �C. At each time instant, each machine of the grid is aware of the best partial solutions discovered up to
that instant which contain at least a vertex stored in its local memory. Although the algorithm is based on a greedy strategy,
it is proved to return the optimal complete paths. Further, the algorithm includes techniques to deal with fault recovery and
termination detection over the whole grid. Due to lack of space, we do not report the full algorithm, whose details can be
found in [3].

2.2 The Extended Model

As stated above, in our extended model, both the data-graph and the RPQ are weighted by fuzzy quantities, to deal with
the augmented modeling capabilities described above. The algorithm is generalized so as to perform a semantic matching
of the information granules defined over the RPQ paths versus the knowledge stored in the DB. In other words, the
RPQ is used not only to determine the set of acceptable paths, but also to compute on-the-fly the actual c(π), by using
a measure of dissimilarity between the DB and RPQ weights. Therefore, the novel model of the RPQ is a weighted
FSA A = (P,∆, τ, K, p0, PF ), where K identifies the set of the edge weights. The transition relation τ is defined as τ ⊆
P×∆×K×P , where the transition ti = (pi, si, ki, p

′
i) ∈ τ represents a query on the term labelled si ∈ ∆ and weighted by
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Fig. 3. RPQ paths and corresponding acceptable DB sub-graphs: (top) label matching and (bottom) fuzzy sets matching. Dotted lines
represent DB weights whilst solid lines identify RPQ weights.

ki ∈ K. A simple example of RPQ weighted by fuzzy quantities is shown in Fig. 2(b). Obviously, the characteristics of the
weight set K depend on the kind of information granulation that is chosen for knowledge representation. For this particular
problem, K is a semi-ring whose elements are fuzzy quantities [8], with commutative sum ⊕ and distributive product ⊗
implementing the fuzzy union ∪ and intersection ∩ operators, respectively. We refer to this semi-ring as F . In the light of
this fuzzy interpretation, we associate each fuzzy quantity kl

i ∈ F with a linguistic term tli (e.g. tli = about 5 mins) by
means of a mapping functionM : T → F , such thatM(tli) = kl

i. We remark that the use of this association function allows
to enforce the transparency and interpretability of the model by using meaningful linguistic terms in place of mathematical
notations. In particular, the linguistic approach can be exploited to generate articulated fuzzy descriptions by applying
linguistic modifiers [5] (such as “at most”) to the primitive fuzzy sets, such as “20 minutes”. Linguistic hedges have a
clear mathematical formulation and act by modifying the shape of the fuzzy sets to which they are applied. Therefore it is
possible for the user to reason using only linguistic terms and modifiers, thus hindering the complexity of the underlying
mathematics.

To make the model clearer, consider the RPQ in Fig. 2(b): the weighted automaton A is described by the state set
P = {p0, p1, p2, p3}, the signature ∆ = {road to C1, freeway to C3, highway to C3}, the initial state p0, the final state
set PF = {p3}, and by the transition relation τ = {(p0, road to C1, k

1
1, p1), . . . , (p2, freeway to C3, k

1
3, p3)}, where {k1

1 =
M(about 5 mins), . . . , k1

3 = M(at least 20 mins)} defines the mapping between the linguistic terms and the fuzzy weights
kl

i ∈ F .
Clearly, the three alternative paths defined by the RPQ in Fig. 2(b) over the spatial network of Fig. 2(a) are all accept-

able. As stated above, from an information-granulation point-of-view, the challenge lies in discerning which of the three
alternatives is the most similar to the request, i.e., in performing the semantic matching of the paths. To this aim, we exploit
the notion of similarity of information granules that is common in the literature [9]. We use a similarity index to compute
a dissimilarity measure Sim : K × K → C between each weight of the acceptable path on the DB and the corresponding
weight of the RPQ. Each time a new partial path is discovered by the algorithm, the dissimilarity measure between the
weights of the novel couple of matching edge is computed on-the-fly in the domain C. The choice of the similarity index
employed, and thus of C, must be taken considering that we require certain properties both of ⊕C and �C. For instance, as
in [6], we require that, given a, b, c ∈ C, a �C b ⇒ (a⊕C c) �C (b⊕C c).

Currently, our research is focused on formalizing the required properties and on defining a framework that should
allow to derive a sound instance of the quintuple Q = (K, C,⊕C,�C,Sim). At this stage, we are looking at two possible
alternative strategies, restricted to the special case K ≡ F :

– Early defuzzification: we instantiate Q to (F , R, +̃R,≤R, 1 − Sim), where +̃R is the average operation over reals and
Sim : F × F → [0, 1] is a classical crisp evaluation of similarity of fuzzy quantities [9]. Implementing the cost sum



as the average operator +̃R serves to unbias cost aggregation with respect to path length. Alternatively, if we intend to
penalize longer paths as in [2, 3], we can define the ⊕C operator as the real sum +R.

– Late defuzzification: we instantiate Q to (F ,F , +̃F ,≤F ,Sim), where +̃F is the fuzzy extension of real operator +̃R,
≤F is an ordering relation of fuzzy quantities [6, 7], and Sim : F × F → FN is a fuzzy evaluation of dissimilarity of
fuzzy quantities, with FN defined as the set of fuzzy quantities defined over the real interval [0, 1].

Whilst the early defuzzification option seems very easy to implement, it has the drawback of passing from the information
granule representation to the crisp real representation too early, i.e., each time the on-the-fly cost of an edge is computed.
On the other hand, the late defuzzification option is as powerful as challenging. Indeed, the possibility of representing c(π)
as a fuzzy quantity provides us with a much more significant evaluation of the actual similarity of the paths, but, on the
other hand, implies a sound choice of≤F among the many alternative options in the literature, and the definition of a proper
Sim.

As an example, let us consider the early defuzzification approach together with one of the similarity indices described
in [9]. We define:

Sim(a, b) = 1−
∫

x∈R
(a ∩ b) /

∫
x∈R

(a ∪ b) . (1)

Consider the example in Fig. 3: the matching between the RPQ paths and the corresponding DB subgraphs (Fig. 3 (top))
can be evaluated by applying (1) to the couples of fuzzy weights depicted in Fig. 3 (bottom), obtaining c(πa) = 0.923,
c(πb) = 0.663 and c(πc) = 0.627 for each of the three acceptable paths in Fig. 3(a), 3(b) and 3(c), respectively. As
expected, the cheapest DB path is the one that, by simple intuition, is linguistically most similar to the matching RPQ path.

3 Conclusion

The work is still in its preliminary phase, but opens several challenging theoretical issues. In particular, it would be inter-
esting to study the general case of K as multi-dimensional space, that is K ⊆ K1×K2× ...×Kn, where each Ki identifies
a different domain knowledge, each represented by information granules of a (possibly) different type. Particular care must
be taken to study the necessary conditions that need be satisfied by the domain-dependent dissimilarity functions, by a
general cost sum ⊕C and by the associated order relation �C. Wang and Kerre offer an interesting starting point to tackle
with this theoretical issues in their seminal works concerning advisable properties of the ordering of fuzzy quantities [6, 7].
Further, some work has to be done to explore the generation of a fuzzy model of similarity between fuzzy quantities that
could be exploited in the late defuzzification approach. Indeed, it can be proved that, as far as we are concerned, the only
proposal existing in the literature by Dubois and Prade [9, 10] cannot be used for fuzzy quantities ordering evaluation. On
a more practical side, we intend to evaluate the performance of the model, and particularly of the two strategies described
above, with respect to distributed data-graph querying, as done in [3].
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