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Abstract. We revisit an application developed originally using Induc-
tive Logic Programming (ILP) by replacing the underlying Logic Pro-
gram (LP) description with Stochastic Logic Programs (SLPs), one of
the underlying Probabilistic ILP (PILP) frameworks. In both the ILP
and PILP cases a mixture of abduction and induction are used. The
abductive ILP approach used a variant of ILP for modelling inhibition
in metabolic networks. The example data was derived from studies of
the effects of toxins on rats using Nuclear Magnetic Resonance (NMR)
time-trace analysis of their biofluids together with background knowledge
representing a subset of the Kyoto Encyclopedia of Genes and Genomes
(KEGG). The ILP approach learned logic models from non-probabilistic
examples. The PILP approach applied in this paper is based on a gen-
eral approach to introducing probability labels within a standard sci-
entific experimental setting involving control and treatment data. Our
results demonstrate that the PILP approach not only leads to a signifi-
cant decrease in error accompanied by improved insight from the learned
result but also provides a way of learning probabilistic logic models from
probabilistic examples.

1 Introduction

One of the key open questions of Artificial Intelligence concerns Probabilistic
Logic Learning (PLL) [3], i.e. the integration of probabilistic reasoning with first
order logic representations and machine learning. PLL is also called Probabilistic
ILP (PILP) [7] as it naturally extends Inductive Logic Programming (ILP) [6] to
probabilistic case that can explicitely deal with uncertainty such as missing and
noisy information. Although more and more new developments and successful
applications have been published, there are still many challenges in the PLL
research. One of such challenging questions is ‘should PLL/PILP always learn
from categorical examples? ’ In other word, the data sets used by most PLL/PILP
systems or applications are non-probabilistic, like those used in ILP systems. A
major reason for the problem is we lack the corresponding methods to extract or
estimate empirical probabilities from raw data. We attempt to show a solution to
the problem in this paper by introducing Abductive Stochastic Logic Programs
(SLPs) for metabolic network learning.



2 Metabolic Network Inhibition Learning

One of the applied machine learning approaches, which have been conducted to
model the inhibitory effect of various toxins in the metabolic network of rats, is
abductive ILP [8], a variant of ILP. A group of rats are injected with hydrazine
and the changes on the concentrations of a number of chemical compounds are
monitored during a period of time. The binary information on up/down regu-
lations of metabolite concentrations following toxin treatment is combined with
background knowledge representing a subset of the KEGG metabolic diagrams.
An abductive ILP program is used to learn the potential inhibition occured in
the network, which contains a set of observables, abducibles, background facts
and general background rules under which the effect of the toxin can increase
or reduce the concentration of the meabolites. The key point in the study is it
supports an integration of abduction and induction [4] in an ILP setting, through
which, the abductive explanations of the observations are added to the theory
in a generalized form given by a process of induction on them.

3 Abductive Stochastic Logic Programs

Abductive SLPs [1] are a framework that supports abduction in SLPs [5] to
provide a probability distribution over the abductive hypotheses based on their
possible worlds. An abductive SLP SA is a first order Stochastic Logic Program
that supports stochastic abduction in the following way. Suppose e is an ob-
served arbitry first order ground atom in SA, δ(e, SA) is a stochastic ground
derivation of e derived from SA involving a set of ground abducibles and a is an
arbitrary abducible, then the probability of a can be defined to be the sum of
the probabilities of all the least models that have a in their abduced facts

P (a) =
∑

δ(e,SA)|a∈δ(e,SA)

P (e)P (δ(e, SA)).

To learn an abductive SLP SA, we assume a background knowledge theory
B in the form of a complete SLP and a set of independently observed ground
probabilistic examples E (ie. each e ∈ E is associated with an empirical probabil-
ity P (e)). The learning is to construct a set of labelled hypothesised abducibles
H = {p : ha} such that when added to SA, we have B ∧H |= E and the labels
{p} are chosen to maximize the likelihood of H given E and B

L(H | E, B) = P (E | H,B) =
∏

e∈E

∑

δ∈SS(e,H,B)

P (e)P (δ(e, H, B)),

where SS(e,H, B) denotes the set of all stochastic SLD derivations of e from
the model (H,B). In practice, we perform SLP parameter estimation algorithms,
such as FAM [2], to learn the probabilities for a given set of abducibles.



1. Initialize a matrix MR with column=2 and row=number of metabolites;
2. for each metabolite α do:

2.1. Cα={concentration(α)}, a set of α values observed in the control cases;
2.2. Mα=Mean(Cα),SDα=StandardDeviation(Cα);
2.3. Tα={concentration′(α)}, a set of τα values observed in the treatment cases;
2.4. MR[α, 1] = Mα < Mean(Tα) ? Up : Down;
2.5. MR[α, 2]= Mean({pnorm(τα, Mα, SDα)});

3. Apply matrix MR in the abductive SLP learning

Table 1. Algorithm of estimating empirical probabilities from control/treatment data
for metabolic network inhibition

4 Extracting Probabilistic Examples from Scientific Data

Assume we have a scientific data set involving a set of data values collected
from some control cases as well as a set of data points from some treated cases.
All the data are mutually independent. Table 1 presents an algorithm applied
to our rat metabolic network inhibition data set for extracting the probabilistic
examples from empirical data. The average of the integral (using the PNORM
function in the R Language) MR[α, 2] is considered to be the estimated empirical
probability of α happened in the treatment cases against the control cases.

5 Experiments - Learning Metabolic Network Inhibition

The experiments include two learning tasks – learning abductive SLPC from cat-
egorical (non-probabilistic) examples and learning abductive SLPP from prob-
abilistic examples. In particular, each observation inputted into SLPP is associ-
ated with an estimated empirical probability ρ we have obtained in last section.
Null hypotheses: The predictive accuracy of an SLPP model does not out-
perform an SLPC model for predicting the concentration level of metabolites in
a given rat metabolic network inhibition experiment.
Materials and Methods: The (estimated) empirical probabilities are extracted
from the raw data consisting of the concentration level of 20 metabolites on 20
rats (10 control cases and 10 treated cases) after 8 hours of the injection of
hydrazine. The initial SLP uses background knowledge derived from the ILP
model. We apply a leave-one-out cross validation process to do the prediction
and evaluation. The learning tasks are performed by playing FAM (using Pe-pl
software) under Yap 5.1.1.
Results: The cross validation models are high likely overfitting the training
data due to the fact that the number of parameters (150) is much more than the
number of examples (20); the (log)likelihood generated by FAM and the predic-
tive accuracy of the models are not correlated; the number of iterations and the
depth of recursion affected both the running time and the accuracy of the mod-
els. Therefore, the evaluation of the prediction models is made by calculating
the average predictive accuracy of SLPC and SLPP over n iterations for a given



recursion depth and against the estimated empirical probabilities respectively,
with a statistical significance calculated over n iterations. In particular, when
evaluating only with the categorical observations, the SLPC models correctly
predicted 12 out of 20 metabolites, which is close to the result of ILP models
(about 62% for all the time points); moreover, when evaluating with the prob-
abilistic examples in the case of recursion depth 1, SLPP is consistently more
accurate than SLPC in all the 10 iterations; SLPP outperforms SLPC by 69.0%
against 63.64% in average predictive accuracy with a significance level of 0.03%.
Interpretability: By comparing the learned SLP model with the previous ILP
model, at least two promising new findings have been discovered in the SLP
model, which can be explained by the introduced empirical probabilities. In
addition, the SLP models learned not only the patterns but also the degree of
belief of the patterns which improve the insight from the learned models.

6 Discussion and Conclusions

In conclusion, the null hypotheses we have set in the paper and experiments were
rejected on the bases of the theoretical and experimental results. Our results
demonstrate that the PILP approach not only leads to a significant decrease in
error accompanied by improved insight from the learned result but also provides
a way of learning probabilistic logic models from probabilistic examples. Future
work include further study of the abductive SLPs in theory and more robust
experiments and comparisons in practice.
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