Large Scale Identification of Brain Cells

Paolo Frasconi1, Ludovico Silvestri3, Paolo Soda2, Roberto Cortini1, Francesco S. Pavone3, and Giulio Iannello2

1 DINFO, Università di Firenze
2 Università Campus Biomedico Roma
3 LENS, Università di Firenze
Transgenic mouse cerebellum at the micron scale
Slivestri et al., *Optics Express* 2012

Goal in this work: identification of all Purkinje soma in the whole cerebellum
Cell identification: challenges

• Most existing tools designed to work with small/medium scale images
• Whole mouse cerebellum image: 120 GVoxel
• Over 200,000 Purkinje cells
• Wild variability even within a single image
Mean shift cell identification

• Unsupervised mode seeker
• Cluster voxels based on 3D coordinates
• Fast: 100GVoxel/h on a 2-servers cluster
• Two preliminary steps, both sensitive to contrast:
 • image thresholding
 • seeding (based on intense local maxima)
Mean-shift on raw images

Performance measures

- Precision
- F1-Measure
- Recall

Mean-shift on raw images

Radius of the seed ball

Roughly the radius of smallest soma
Mean-shift on raw images

- Precision
- F1-measure
- Recall

Roughly the radius of smallest soma

Mean shift kernel bandwidth
Semantic deconvolution

- **Classic deconvolution**
 - Assume that the “good quality” image was “blurred” during optical acquisition
 - Blurring modeled as convolution with a point spread function
 - Invert the process

- **Semantic deconvolution**
 - Assume that the “ideal image” consisted of white spheres centered on the soma, on a black background
 - Use supervised learning to invert the process
Semantic deconvolution as supervised learning

No cell segmentation, just use centers!
How to do semantic deconvolution

- Naive idea:
 - Classify each voxel as soma vs non-soma
 - Use 3D patches of size s as input to a neural net
 - Running time: for an image of size n it takes $O(hn^3s^3)$ when using a one-layer net with h units
• Predict s^3 voxels simultaneously in $O(2hn^3s^3)$ using a network with s^3 outputs.

• Using a stride of d when moving the patch we may speed up the computation significantly $O(2hn^3s^3/d^3)$, e.g. for $d=4$ we get a 32x speedup over the naive approach.
Mean-shift on semantically deconvolved images

![Graph showing the comparison of Precision, Recall, and F1-measure before and after mean-shift on semantically deconvolved images. The x-axis represents the mean shift kernel bandwidth, and the y-axis represents the values of Precision, Recall, and F1-measure. The graph shows an increase in F1-measure and Precision, and a decrease in Recall after the mean-shift.](image-url)
Mean-shift on semantically deconvolved images

Performance measures

Recall
F1-Measure
Precision

Precision
F1-Measure
Recall

Before
After

Radius of the seed ball
Can we do even better?

• Best F_1 measure so far 0.93
• The cerebellum cortex folds into folia, i.e. manifolds
• Isolated / off-manifold predictions: mostly false positives
• Estimate manifold distance: charted Isomap + LOWESS
• The filter gains 3 points of F_1 measure
Using the manifold filter
Questions?

Paolo Frasconi1, Ludovico Silvestri3, Paolo Soda2, Roberto Cortini1, Francesco S. Pavone3, and Giulio Iannello2

1 DINFO, Università di Firenze
2 Università Campus Biomedico Roma
3 LENS, Università di Firenze
Mean shift cell identification

- Mean shift is a hard version of kernel density estimation (in the same sense as k-means is a hard version of Gaussian mixture modeling)
- We use XYZ coordinates (major difference wrt other MS segmentation approaches which work on intensity/color/texture)
Sketch of the algorithm

- Start from all data points. Pick a set of seeds.
- Place a monotone kernel around each seed.
- Iterate until convergence.
 - Compute the weighted mean center of mass of the points falling within the kernel.
 - Move the seed into the center of mass.
- Remove duplicates.
Substacks

• One-shot application of the MS algorithm to 100GB not practical

• Split into 9000 overlapping substacks of size 245x280x280

• Two advantages:
 • Trivial parallelization
 • Local thresholding to discard background noisy voxels
Measuring prediction quality

We manually marked 4138 Purkinje nuclei in 56 different regions of the cerebellum image.
Comparing to other approaches?

- None developed specifically for this type of animal (mouse), type of cells (Purkinje), type of labeling (enhanced GFP), type of microscopy (confocal LSM)

- DeadEasy Mito-Glia (Forero et al. 2010) designed to detect mitotic cells labeled by anti-phospho-histone H3 in drosophila acquired by laser-scanning confocal microscopy

- Probably not a fair comparison but we still may gain some insights:
 - Several parameters to be tuned
 - Tried 140 different combinations of parameters in 56 cerebellum regions
 - Results are very sensitive to the choice of parameters
 - Taking the BEST parameter combination in each region leads to an overall performance of 0.95 precision, 0.78 recall, 0.86 F1-measure
 - By contrast, taking the best parameter on average leads to an overall performance of 0.88 precision, 0.76 recall, 0.82 F1-measure
Manifold filter algorithm

- Given \(S = \{(x^{(i)}, y^{(i)}, z^{(i)}), i = 1, \ldots, n\} \)
- Run ISOMAP to embed \(S \) into a 2D space:
 \[H = \{(u^{(i)}, v^{(i)}), i = 1, \ldots, n\} \]
- For \(i = 1, \ldots, n \):
 - Let \(f^{(\setminus i)} \) be a LOWESS (locally-weighted regression) model trained on \(n - 1 \) points (except \(i \)) using the 2D embeddings as predictors and the corresponding 3D coordinates as responses.
 - The estimated distance from \(i \) to the manifold is

\[
 d^{(i)} = \left\| f^{(\setminus i)}(u^{(i)}, v^{(i)}) - (x^{(i)}, y^{(i)}, z^{(i)}) \right\|
\]